skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kushner, Mark_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Two-dimensional (2D) absolute measurements of hydrogen peroxide (H2O2) and approximations of the hydroperoxyl radical (HO2) in the effluent of a COST Reference Microplasma Jet operated with a He/H2O feed gas are presented. Gas-phase densities are mapped using photofragmentation laser-induced fluorescence (PF-LIF) under three boundary conditions: open effluent, a solid target, and a liquid target. A novel method is presented for separating PF-LIF signals from H2O2and HO2using comparative measurements in oxygen-rich and oxygen-free environments to exploit the preferential formation of HO2in the presence of molecular oxygen. This separation strategy is supported by results from a plug-flow plasma chemistry model. Measured densities agree closely with model predictions in both magnitude and trend, while the 2D experimental distributions provide additional insight into the spatial dependencies of these species. In particular, the results show distinct differences in species transport depending on the target type: solid surfaces induce lateral deflection and reduced centerline densities, whereas liquid interfaces promote axial accumulation and higher near-axis concentrations. 
    more » « less
  2. Abstract Plasmas interacting with liquid surfaces produce a complex interfacial layer where the local chemistry in the liquid is driven by fluxes from the gas phase of electrons, ions, photons, and neutral radicals. Typically, the liquid surface has at best mild curvature with the fluxes of impinging plasma species and applied electric field being nominally normal to the surface. With liquids such as water having a high dielectric constant, structuring of the liquid surface by producing a wavy surface enables local electric field enhancement due to polarization of the liquid, as well as producing regions of higher and lower advective gas flow across the surface. This structuring (or waviness) can naturally occur or can be achieved by mechanical agitation such as with acoustic transducers. Electric field enhancement at the peaks of the waves of the liquid produces local increases in sources of reactive species and incident plasma fluxes which may be advantageous for plasma driven solution electrochemistry (PDSE) applications. In this paper, results are discussed from a computational investigation of pulsed atmospheric pressure plasma jets onto structured water solutions containing AgNO3as may be used in PDSE for silver nanoparticle (NP) formation. The solution surface consists of standing wave patterns having wavelength and wave depth of hundreds of microns to 1 mm. The potential for structured liquid surfaces to facilitate spatially differentiated chemical selectivity and enhance NP synthesis in the context of PDSE is discussed. 
    more » « less
  3. Abstract Planar laser-induced fluorescence (LIF) was employed to measure the absolute density of hydroxyl radicals (OH) in the effluent of the COST Reference Microplasma Jet for two feed gas mixtures: He/H2O and He/O2. Experiments were conducted with the effluent propagating into air and N2environments. For the He/H2O case, measurements were also performed with the effluent impinging on a solid target at varying distances from the jet nozzle. Calibration of the OH-LIF signal from the COST-Jet was achieved by comparing it to a reference signal generated by the photofragmentation of H2O2. Results demonstrated that OH densities were sustained longer when the effluent propagates in a nitrogen environment compared to air, particularly with water added to the feed gas. The broader OH distribution in N2suggests slower consumption due to the absence of oxygen, which accelerates OH depletion in air via reactions involving O2and HO2. Even when water was not added to the feed, as in the He/O2case, appreciable OH densities were observed, due to gas impurities and reactive species interactions with atmospheric humidity, forming reaction fronts that delineate the gas flow. Two-dimensional fluid dynamics simulations elucidated the influence of atmospheric gas entrainment and solid targets on the OH distribution. Experimental trends were further compared with a zero-dimensional chemistry model to explore OH production and consumption mechanisms in air and nitrogen environments. 
    more » « less
  4. Abstract Cold atmospheric plasma devices have shown promise for a variety of plasma medical applications, including wound healing and bacterial inactivation often performed in liquids. In the latter application, plasma-produced reactive oxygen and nitrogen species (RONS) interact with and damage bacterial cells, though the exact mechanism by which cell damage occurs is unclear. Computational models can help elucidate relationships between plasma-produced RONS and cell killing by enabling direct comparison between dissimilar plasma devices and by examining the effects of changing operating parameters in these devices. In biological applications, computational models of plasma-liquid interactions would be most effective in design and optimization of plasma devices if there is a corresponding prediction of the biological outcome. In this work, we propose a hierarchal model for planktonic bacterial cell inactivation by plasma produced RONS in liquid. A previously developed reaction mechanism for plasma induced modification of cysteine was extended to provide a basis for cell killing by plasma-produced RONS. Results from the model are compared to literature values to provide proof of concept. Differences in time to bacterial inactivation as a function of plasma operating parameters including gas composition and plasma source configuration are discussed. Results indicate that optimizing gas-phase reactive nitrogen species production may be key in the design of plasma devices for disinfection. 
    more » « less
  5. Abstract Remote plasmas are used in semiconductor device manufacturing as sources of radicals for chamber cleaning and isotropic etching. In these applications, large fluxes of neutral radicals (e.g. F, O, Cl, H) are desired with there being negligible fluxes of potentially damaging ions and photons. One remote plasma source (RPS) design employs toroidal, transformer coupling using ferrite cores to dissociate high flows of moderately high pressure (up to several Torr) electronegative gases. In this paper, results are discussed from a computational investigation of moderate pressure, toroidal transformer coupled RPS sustained in Ar and Ar/NF3mixtures. Operation of the RPS in 1 Torr (133 Pa) of argon with a power of 1.0 kW at 0.5 MHz and a single core produces a continuous toroidal plasma loop with current continuity being maintained dominantly by conduction current. Operation with dual cores introduces azimuthal asymmetries with local maxima in plasma density. Current continuity is maintained by a mix of conduction and displacement current. Operation in NF3for the same conditions produces essentially complete NF3dissociation. Electron depletion as a result of dissociative attachment of NF3and NFxfragments significantly alters the discharge topology, confining the electron density to the downstream portion of the source where the NFxdensity has been lowered by this dissociation. 
    more » « less
  6. Miniaturized photoionization detectors (PIDs) are used in conjunction with gas chromatography systems to detect volatile compounds in gases by collecting the current from the photoionized gas analytes. PIDs should be inexpensive and compatible with a wide range of analyte species. One such PID is based on the formation of a He plasma in a dielectric barrier discharge (DBD), which generates vacuum UV (VUV) photons from excited states of He to photoionize gas analytes. There are several design parameters that can be leveraged to increase the ionizing photon flux to gas analytes to increase the sensitivity of the PID. To that end, the methods to maximize the photon flux from a pulsed He plasma in a DBD-PID were investigated using a two-dimensional plasma hydrodynamics model. The ionizing photon flux originated from the resonance states of helium, He(3P) and He(21P), and from the dimer excimer He2*. While the photon flux from the resonant states was modulated over the voltage pulse, the photon flux from He2* persisted long after the voltage pulse passed. Several geometrical optimizations were investigated, such as using an array of pointed electrodes. However, increasing the capacitance of the dielectric enclosing the plasma chamber had the largest effect on increasing the VUV photon fluence to gas analytes. 
    more » « less
  7. The use of non-sinusoidal waveforms in low pressure capacitively coupled plasmas intended for microelectronics fabrication has the goal of customizing ion and electron energy and angular distributions to the wafer. One such non-sinusoidal waveform uses the sum of consecutive harmonics of a fundamental sinusoidal frequency, f0, having a variable phase offset between the fundamental and even harmonics. In this paper, we discuss results from a computational investigation of the relation between ion energy and DC self-bias when varying the fundamental frequency f0 for capacitively coupled plasmas sustained in Ar/CF4/O2 and how those trends translate to a high aspect ratio etching of trenches in SiO2. The fundamental frequency, f0, was varied from 1 to 10 MHz and the relative phase from 0° to 180°. Two distinct regimes were identified. Average ion energy onto the wafer is strongly correlated with the DC self-bias at high f0, with there being a maximum at φ = 0° and minimum at φ = 180°. In the low frequency regime, this correlation is weak. Average ion energy onto the wafer is instead dominated by dynamic transients in the applied voltage waveforms, with a maximum at φ = 180° and minimum at φ = 0°. The trends in ion energy translate to etch properties. In both, the high and low frequency regimes, higher ion energies translate to higher etch rates and generally preferable final features, though behaving differently with phase angle. 
    more » « less
  8. Plasma etching is an essential semiconductor manufacturing technology required to enable the current microelectronics industry. Along with lithographic patterning, thin-film formation methods, and others, plasma etching has dynamically evolved to meet the exponentially growing demands of the microelectronics industry that enables modern society. At this time, plasma etching faces a period of unprecedented changes owing to numerous factors, including aggressive transition to three-dimensional (3D) device architectures, process precision approaching atomic-scale critical dimensions, introduction of new materials, fundamental silicon device limits, and parallel evolution of post-CMOS approaches. The vast growth of the microelectronics industry has emphasized its role in addressing major societal challenges, including questions on the sustainability of the associated energy use, semiconductor manufacturing related emissions of greenhouse gases, and others. The goal of this article is to help both define the challenges for plasma etching and point out effective plasma etching technology options that may play essential roles in defining microelectronics manufacturing in the future. The challenges are accompanied by significant new opportunities, including integrating experiments with various computational approaches such as machine learning/artificial intelligence and progress in computational approaches, including the realization of digital twins of physical etch chambers through hybrid/coupled models. These prospects can enable innovative solutions to problems that were not available during the past 50 years of plasma etch development in the microelectronics industry. To elaborate on these perspectives, the present article brings together the views of various experts on the different topics that will shape plasma etching for microelectronics manufacturing of the future. 
    more » « less